Semiconductor Fabrication Process

(반도체공정개론)

장소: 공과대학 6호관 510호 시간: 화 (1-A, 1-B, 2-A, 2-B, 3-A, 3-B)

Objectives

Overview of Silicon Technology

- Wafer preparation
- Lithography
- Oxidation
- Etching
- Doping
- Deposition
- Packaging

Applications for Wafer Etch in CMOS Technology

(a) Photoresist-patterned substrate

(b) Substrate after etch

Process Flow in a Wafer Fab

Used with permission from Advanced Micro Devices

Applied Nanomaterials & Devices LAB. Electronics & Probes by Materials Engineering Figure 16.2

Etch Process

Categories of Etch Processes

- Wet Etch
- Dry Etch
- Three Major Materials to be Etched
 - Silicon
 - Dielectric
 - Metal
- Patterned Etch Versus Unpatterned Etch

Etch Parameters

- Etch rate
- Etch profile
- Etch bias
- Selectivity
- Uniformity
- Residues
- Polymer formation
- Plasma-induced damage
- Particle contamination and defects

Etch Rate

t = elapsed time during etch

Wet Chemical Isotropic Etch

Isotropic etch - etches in all directions at the same rate

Anisotropic Etch with Vertical Etch Profile

Sidewall Profiles for Wet Etch Versus Dry Etch

Type of Etch	Sidewall Profile	Diagram
Wet Etch	Isotropic	
	Isotropic (de pending on e quipment & parameters)	
Dry Etch	Anisotropic (depending on equipment & parameters)	
	Anisotropic – Taper	
	Silicon Trench	

Etch Bias

Etching Undercut and Slope

Etch Selectivity

Etch Uniformity

Randomly select 3 to 5 wafers in a lot

Measure etch rate at 5 to 9 locations on each wafer, then calculate etch uniformity for each wafer and compare wafer-to-wafer.

Polymer Sidewall Passivation for Increased Anisotropy

Dry Etch

- Advantages of Dry Etch over Wet Etch
- Etching Action
- Potential Distribution

Advantages of Dry Etch over Wet Etch

1. Etch profile is anisotropic with excellent control of side wall profiles.

2. Good CD control.

3. Minimal resist lifting or adhesion problems.

4. Good etch uniformity within wafer, wafer-to-wafer and 1 ot-to-lot.

5. Lower chemical costs for usage and disposal.

Plasma Etch Process of a Silicon Wafer

Chemical and Physical Dry Etch Mechanisms

Chemical Versus Physical Dry Plasma Etching

Etch Parameter	Physical Etch (RF field per pendicular to wafer surface)	Physical Etch (RF field par allel to wafer surface)	Chemical Etch	Combined Physical and Chemical
Etch Mechanism	Physical ion sputtering	Radicals in pla sma reacting w ith wafer surfa ce*	Radicals in li quid reacting with wafer su rface	In dry etch, etc hing includes i on sputtering a nd radicals reac ting with wafer surface
Sidewall Profile	Anisotropic	Isotropic	Isotropic	Isotropic to Anisotropic
Selectivity	Poor/difficult to increase (1:1)	Fair/good (5:1 to 100:1)	Good/excellent (up to 500:1)	Fair/good (5: 1 to 100:1)
Etch Rate	High	Moderate	Low	Moderate
CD Control	Fair/good	Poor	Poor to non- existent	Good/excellent

* Used primarily for stripping and etchback operations.

Plasma Etch Reactors

- Barrel plasma etcher
- Parallel plate (planar) reactor
- Downstream etch systems
- Triode planar reactor
- Ion beam milling
- Reactive ion etch (RIE)
- High-density plasma etchers

Dry Etch Applications

- Dielectric Dry Etch
 - Oxide
 - Silicon Nitride
- Silicon Dry Etch
 - Polysilicon
 - Single-Crystal Silicon
- Metal Dry Etch
 - Aluminum and Metal Stacks
 - Tungsten Etchback
 - Contact Metal Etch

Requirements for Successful Dry Etch

- 1. High selectivity to avoid etching materials that are not to be etched (primarily photoresist and underlying materials).
- 2. Fast etch rate to achieve an acceptable throughput of wafers.
- 3. Good sidewall profile control.
- 4. Good etch uniformity across the wafer.
- 5. Low device damage.
- 6. Wide process latitude for manufacturing.

Dry Etch Critical Parameters

Oxide Etch Reactor

Wet Etch

- Wet Etch Parameters
- Types of Wet Etch
 - Wet Oxide Etch
 - Wet Chemical Strips

Wet Etch Parameters

Parameter	Explanation	Difficulty to Control
Concentration	Solution concentration (e.g. , ratio of NH4F:HF for etch an oxide).	Most difficult parameter to contr ol because the bath concentratio n is continually changing.
Time	Time of wafer immersio n in the wet chemical ba th.	Relatively easy to control.
Temperature	Temperature of wet ch emical bath.	Relatively easy to control.
Agitation	Agitation of the solution bat h.	Moderate difficulty to pr operly control.

Approximate Oxide Etch Rates in BHF Solution at 25° C

Table 16.8 ¹ Approximate Oxide Etch Rates in BHF Solution at 25°C ^a					
Type of Oxide	Density (g/cm ³)	Etch Rate (nm/s)			
Dry grown	2.24 - 2.27	1			
Wet grown	2.18 - 2.21	1.5			
CVD deposited	< 2.00	1.5 ^b -5 ^c			
Sputtered	< 2.00	10 - 20			

a) 10 parts of 454 g NH_4F in 680 ml H_2O and one part 48% $\,HF$

b) Annealed at approximately 1000°C for 10 minutes

c) Not annealed

¹B. El-Kareh, ibid, p. 277.

Photoresist Removal

Plasma Ashing

- Asher Overview
- Plasma Damage
- Residue Removal

Atomic Oxygen Reaction with Resist in Asher

Post Etch Via Veil Residue

End of Slide