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Objectives 

Overview of the physical electronics of semiconductor

- Energy band theory

- Doping principle

- Free carrier statistics

- Drift and diffusion



Electronic properties of materials

How do we know the electrical properties materials?

R = V /I From Ohm’s law

the current I flowing through a bar of homogeneous material with uniform cross 

section when a voltage V is applied across it, we can find its resistance R

Resistance: R

Resistivity: ρ

is related to the resistance of the bar by a geometric ratio where L

and A are the length and cross-sectional area of the sample



FREE CARRIERS IN SEMICONDUCTORS

the electronic properties of solids was to the familiar linear relationship that is often 

found between the current flowing through a sample and the voltage applied across it

To accomplish this we first develop a picture of the kinetic properties 

of free electrons without any external fields. 

low to moderate fields

the high-field case

This relationship is known as Ohm's law: V = IR



FREE CARRIERS IN SEMICONDUCTORS

Carrier (electron or hole) in semiconductor

electrons (and holes) in semiconductors are almost "free particles" in the sense that 

they are not associated with any particular lattice site

The influences of crystal forces are incorporated in an effective mass that differs 

somewhat from the free-electron mass

Using the laws of statistical mechanics, 

Electrons and holes have the thermal energy associated with classical free 

particles: 
1

2
kT units of energy per degree of freedom

where k is Boltzmann's constant

T is the absolute temperature

This means that electrons in a crystal at a finite temperature are not 

stationary, but are moving with random velocities



the mean-square thermal velocity vth of the electrons is approximately* related to 

the temperature by the equation

where 𝑚𝑛
∗ is the effective mass of conduction-band electrons. 

For silicon 𝑚𝑛
∗ = 0.26 𝑚𝑜

(where 𝑚𝑜 is the free electron rest mass), and vth is calculated from Equation 

1.2.1 to be 2.3 × 107 cm s-1 at T = 300 K.

Kinetic energy of the electron

The electrons may be pictured as moving in random directions through the lattice, 

colliding among themselves and with the lattice. 

At thermal equilibrium, the motion of the system of electrons is completely random 

so that the net current in any direction is zero

Thermal Velocity



Kinetic energy of the electron

Average thermal velocity of conduction electron

in three dimensional space ( ~107 cm/s @ 300K)
− mnvth

2 =  − kT
2

1

2

3

vth = l / τc

The electron in semiconductors move rapidly in all direction.

Series of random scattering from collision with scattering centers (lattice atoms, impurity)

▪Average distance between collision : mean free path (l ~ 10-5 cm)

▪Average time between collision : mean free time (τc ~ 1ps)

No electric field applied
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Drift Velocity

Electrons experience force : - qE

→Accelerate the electrons

→ additional velocity components created : drift velocity

momentum = force × time

= mass × velocity

- qEτc = m*nvn

The momentum applied to the electron : - qEτc

The momentum gained : m*
nvn

vn =  - E → electron drift velocity proportional to E
qτc

m*n

Proportionality factor : electron mobility μn   [ cm2/Vs]

vn =  - μn EElectron drift velocity :

vp =  μp EHole drift velocity : 

When an electric field E is applied to the semiconductors,

Electric field applied
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Drift Velocity

When an electric field E is applied to the semiconductors,

Electric field applied

μn =
qτc

m*n

The proportionality factor is an important property of the electron called the mobility 

and is designated by the symbol μn

Because vn = - μn E, the mobility describes how easily an electron moves in response 

to an applied field.

the current density flowing in the direction of the applied field can be found by 

summing the product of the charge on each electron times its velocity over all 

electrons n per unit volume.

E



Drift Velocity

When an electric field E is applied to the semiconductors,

Electric field applied

The hole mobility μp

For hole,

A hole with zero kinetic energy resides at the valence-band edge Ev

The kinetic energy of a hole in the valence band is therefore measured by (Ev - E).

If a band edge is tilted (E-field applied), the hole moves upward on an electron energy-

band diagram

μp =
qτcp

m*p

The total current can be written as the sum of the electron and hole current

E

conductivity σ of the semiconductor



Mobility and Scattering

Quantum-mechanical calculations indicate that a perfectly periodic lattice does not 

scatter free carriers; 

→ the carriers do not interchange energy with a stationary, perfect lattice.

However, at any temperature above absolute zero the atoms that from the lattice 

vibrate.

These vibrations disturb periodicity and allow energy to be transferred 

between the carriers and the lattice.

scattering processes lead to heating of the semiconductor. The dissipation of 

this heat is often a limiting factor in the size of semiconductor devices.

A device must be large enough to avoid heating to temperatures at which it no 

longer functions

The interactions with lattice vibrations can be viewed as collisions with energetic

"particles" called phonons. 

Phonons, like photons, have energies quantized in units of hv, where v is the 

lattice-vibrational frequency and h is Planck's constant



Mobility and Scattering

Mobility related with mean free time between collisions 

→ determined by various scattering mechanism

Lattice scattering 
: thermal vibration of the lattice atoms at non-zero temperature

→ lattice vibration energy transferred to the electrons

→ lattice vibration increase with increasing temperature

→ mobility decrease with increasing temperature

→ lattice scattering dominate at high temperature

(Lattice scattering, Impurity scattering)

Mobility due to lattice scattering :  μl∝ T-3/2 : theoretical analysis

At low temperature At high temperature



Mobility and Scattering

when charge carrier travels around ionized impurities (donor or acceptor)

→ charge carrier path deflected due to Coulomb force

→ ionization scattering depends on concentration of ionized impurity (NT)

→ at higher temperature, carriers move faster

→ carriers remain near the impurity ion for very short time

→ impurity scattering less significant at higher temperature 

Mobility due to impurity scattering :  μi∝ T3/2 / NT

NT : total impurity concentration

Impurity scattering : 

Si

As+

Si

E E

electron



Mobility and Scattering

Impurity scattering : 

the mobilities of electrons and holes 

in silicon at room temperature

In lightly-doped material, 

the mobility resulting from 

ionized impurity scattering is 

higher than that due to lattice 

scattering.

At higher dopant concentrations, 

however, scattering by ionized 

impurities becomes comparable 

to or greater than that resulting 

from lattice vibrations, and the 

total mobility decreases.



Mobility and Scattering

Effect of temperature on mobility

= + 
μi μlμ

1 1 1
Total mobility

Low doping

High doping

▪At low T : impurity scattering dominates

▪At high T : lattice scattering dominates

▪ low doping : lattice scattering dominates

▪ high doping : impurity scattering dominates 

at low temperature

15



Resistivity

n-type n-type
I

When electric field E is applied to a semiconductor, electron experiences a force -qE .

v

Ec

Ev

EF

Ei

Under thermal equilibrium Under a biasing condition

Ec

Ev

EF

Ei

Energy

Distance (x)

qV

C idE dE

dx dx
− = −-qE = gradient of electron potential energy = E  = 

1 idE

q dx

We can define electrostatic potential, Ψ as E 
d

dx


 −

E



Resistivity

Uniformly doped (n cm-3)

In v

Under a applied electric field

E = V / L

Potential energy and Ei  decrease linearly with distance.

E  = 
1 idE

q dx
Electric field is constant in x-direction.

Ec

Ev

EF

EiqV

Electron move opposite direction of electric field.

→ Increase of kinetic energy.

→ Electron loses kinetic energy by collision with lattice.

→ Repeat several times (opposite direction for holes)

➔ Conduction process under applied electric field

➔ Drift current

kinetic energy

A

L

Current in a semiconductor with carrier concentration (n / cm3) an applied electric field E

1

( )
n

n
n i n n

i

I
J qv qnv qn

A


=

= = − = − = E vn =  - μn E

p p pJ qpv qp= = E vp =   μp E

Electron current :

Hole current :



Resistivity

( )n p n pJ J J qn qp = + = + E

Total current in a semiconductor under a applied electric field E

( )n pq n p = + E


→ Conductivity of semiconductor( )n pq n p  = +

Resistivity of semiconductor

1 1

( )n pq n p


  
 =

+

i) For n-type semiconductor (n >> p)

1

nqn



=

ii) For p-type semiconductor (p >> n)

1

pqp



=



Diffusion Current

Drift current

→ flows when an electric field is applied and which follows Ohm's law. Ohmic 

behavior is observed in metals and semiconductors and is probably familiar from 

direct experience

→ if a spatial variation of carrier energies or densities exists within the material.

Additional important component of current in semiconductor

Diffusion current.

*Diffusion current is generally not an important consideration in metals because 

metals have very high conductivities

The lower conductivity and the possibility of nonuniform densities of carriers 

and of carrier energies makes diffusion an important process affecting current 

flow in semiconductors

Origin of diffusion current.



Diffusion Current

To understand the origin of diffusion current, we consider the hypothetical case

of an n-type semiconductor with an electron density that varies only in one dimension

the semiconductor is at a uniform temperature 

so that the average energy of electrons does not 

vary with x; only the density n(x) varies

no electric fields are applied

On the average, the electrons crossing the plane 

x = 0 from the left in Figure 1.19 start at 

approximately x = -λ after a collision where λ is 

the mean-free path of an electron,

given by λ = vthτcn

The average rate (per unit area) of electrons crossing the

plane x = 0 from the left, therefore, depends on the density of 

electrons that started at x = - λ and is

The factor (1/2) appears because half of the electrons travel to the left and 

half travel to the right after a collision at x = - λ



Diffusion Current

The average rate (per unit area) of electrons crossing the

plane x = 0 from the right, therefore, depends on the density of 

electrons that started at x = λ and is

the net rate or flux of particle flow per unit area from the left to right (denoted F)

𝐹 = 𝐹1 − 𝐹2 =
1

2
𝑣𝑡ℎ ⋅ 𝑛(−λ) − 𝑛(λ)

Approximate the density at x= ± λ by the first 

two terms of a Taylor series expansion
=
1

2
𝑣𝑡ℎ ⋅ 𝑛(0) − λ

𝑑𝑛

𝑑𝑥
− 𝑛(0) + λ

𝑑𝑛

𝑑𝑥

= −𝑣𝑡ℎλ
𝑑𝑛

𝑑𝑥

Because each electron carries a charge -q, 

the particle flow corresponds to a current𝐽𝑛 = −𝑞𝐹 = 𝑞λ𝑣𝑡ℎ
𝑑𝑛

𝑑𝑥

The diffusion current is proportional to the spatial derivative of the electron density 

and arises because of the random thermal motion of charged particles in a 

concentration gradient



Diffusion Current

For an electron density that increases with increasing x, the gradient is positive,

as is the current. 

Because electrons to flow from the higher density region at the right to the lower density 

region at the left and current flows in the direction opposite to that of the electron

E
le

ct
ro

n
 d
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 n

(x
)

current

electrons

Distance x

Electron density at uniform temperature

0 λ- λ

n(- λ) 

n(0)

n(λ)

𝐽𝑛 = 𝑞λ𝑣𝑡ℎ
𝑑𝑛

𝑑𝑥

λ = 𝑣𝑡ℎτ𝑐𝑛Using 

𝐽𝑛 = 𝑞
𝑘𝑇

𝑞
𝜇𝑛

𝑑𝑛

𝑑𝑥

Diffusion coefficient (diffusivity)

𝐷𝑛 =
𝑘𝑇

𝑞
𝜇𝑛 ----- Einstein relation 

Relationship between two important constant (diffusivity & mobility)

→ Related to the carrier transport by diffusion and drift in semicondoctor



Diffusion Current

The current due to carrier diffusion is

𝐽𝑛 = −𝑞𝐹 = 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥

→ Diffusion current results from the random thermal   

motion of carriers in a concentration gradient

𝐽𝑝 = 𝑞𝐹 = −𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥

When an electric field is applied to a semiconductor with concentration gradient

➔ Total current at any point is the sum of the drift and diffusion components

𝐽𝑛 = 𝑞𝜇𝑛𝑛𝐸 + 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥 → Electron current 

𝐽𝑝 = 𝑞𝜇𝑝𝑝𝐸 − 𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥 → Hole current

Total conduction current

𝐽𝑐𝑜𝑛𝑑 = 𝐽𝑛 + 𝐽𝑝

𝐽𝑛 = 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥

𝐽𝑛 = 𝑞𝑛𝜇𝑛 EDrift : 

Diffusion :

𝐽𝑝 = −𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥

𝐽𝑝 = 𝑞𝑝𝜇𝑝 EDrift : 

Diffusion :



Physics of the Hall Effect

The Hall effect, named for American physicist E. H. Hall who discovered it in 1879, is a 

direct consequence of the force exerted on charged carriers moving in a magnetic field

The force on a particle having charge q and moving in a magnetic field 𝐵 with 

velocity Ԧ𝑣 (both variables being vector quantities) is written

Ԧ𝐹 = 𝑞 Ԧ𝑣 × 𝐵 where the vector cross product (×) signifies the product of the vector 

magnitudes times the sine of the angle between them.

The Hall effect is usually used with an extrinsic semiconductor so that one carrier 

dominates and the other has a negligible density



Physics of the Hall Effect

Ԧ𝐹 = 𝑞 Ԧ𝑣 × 𝐵

the current carriers (electrons or holes) in a conductor experience a force in a direction 

perpendicular to both the magnetic field and the carrier velocity (applied electrical field).

In the steady state, this force is balanced by an induced electric field that

results from a slight charge redistribution

These forces must balance because there can be no net steady-state motion 

of the carriers in the transverse direction.

➔ Hole accumulation at the end of the materials

→ Electric field established (Ey) : Hall effect

direction perpendicular to 

both the magnetic field and 

electrical field

The induced electric field is called the Hall field EH. Integrating the Hall field with 

respect to position across the width of the conductor produces the Hall voltage V H



Physics of the Hall Effect

p-type semiconductor Bz
z

x

y

+ - V

W
Ex

vx

A

Ex

Bz

VH

+

-

+ -

Eyvx

A

pJ

hole

Apply 
Electric field along x-direction : Ex

Magnetic field along z-direction : Bz

Force
generated

Ex : holes move toward x-direction

Lorentz force to upward
= qv × B = qvxBz

➔ Hole accumulation at the top

→ Electric field established (Ey) : Hall effect

→ Electric field balance with Lorentz force



Physics of the Hall Effect

Bz
z

x

y

+ - V

W
Ex

vx

A

p-type semiconductor

Ex

Bz

VH

+

-

+ -

Eyvx

A

pJ

hole

current flow is in the positive x-direction, the magnetic field is in the positive z-

direction, and the Hall field is therefore along the y-direction

The magnetic force deflects both holes and electrons in the negative y-direction and induces 

a Hall field toward positive y for holes, and in the opposite direction for electrons

Consider the drift velocity vx of the current carriers. Equating the magnitudes of 

the magnetic and Hall-field forces



Physics of the Hall Effect

the Hall field can be written in terms of the current and the applied magnetic field as

1p

y z p z

J
E B J B

qp qp

   
= =   

  
H p zR J B=

𝑅𝐻 ≡
1

𝑞𝑝
: Hall coefficient (for hole)

𝑅𝐻 ≡ −
1

𝑞𝑛
: Hall coefficient (for electron)

Terminal voltage VH = EyW  

:   Hall voltage 
y

H

p z

E
R

J B
=

→We can know the carrier concentration & the carrier type of semiconductor
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