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A system of electrons is characterized by a constant Fermi level at thermal 

equilibrium. 

This principle was initially used to deduce the energy-band diagram of a  

semiconductor having two doping levels. 

Systems that are initially not in thermal equilibrium approach equilibrium as electrons 

move from regions with a higher Fermi level to regions with a lower Fermi level. 

The transferred charge causes the buildup of barriers against further electron flow, 

and the potential drop across these barriers increases to a value that just equalizes the 

Fermi levels.

These concepts were the foundation for an extensive analysis of metal-semiconductor

contacts.

In Chapter 3



In chapter 4

We consider similar phenomena in a single crystal of semiconductor material containing 

regions having different dopant concentrations.

The quasi-neutrality approximation is employed in a region of a semiconductor containing

a slowly varying dopant concentration, while the depletion approximation is useful in the 

important case of a semiconductor containing adjacent p- and n-type regions.

We discuss in some detail the transition region at a pn junction and the barrier

associated with this transition region

We next consider the influence of an applied reverse voltage on the transition region and 

show that changes in this applied voltage lead to capacitive behavior.

We then extend the concepts to a system containing two different semiconducting 

materials.



Graded impurity distributions

Equilibrium in a semiconductor with a dopant concentration that varies in an arbitrary manner with 

position

We assume that initially the majority-carrier concentration equals the dopant concentration at 

every point in the material-a nonequilibrium condition.

A gradient in the mobile carrier concentration leads to diffusion of carriers from regions of higher 

concentration to regions of lower concentration

As the carriers move from their initial locations, they leave behind uncompensated, oppositely 

charged dopant ions. This separation of positive and negative charges creates a field that opposes 

the diffusion flow.

Equilibrium is eventually reached when the tendency of the carriers to diffuse to regions of lower 

density is exactly balanced by their tendency to move in the opposite direction because of the

electric field created by the charge separation.



Graded impurity distributions

How the built-in electric field affects the energy-band diagram

Because the system is at thermal equilibrium, the 

Fermi level is constant throughout the system.

However, the variation of the dopant density and 

carrier concentration with position causes the 

separation between the Fermi level and the valence-

and conduction-band edges to vary with position.

The separation between the Fermi level and the

band edge is less in regions of high carrier density 

than in regions of lower density, and the intrinsic 

Fermi level Ei crosses the Fermi level Ef where the 

net dopant concentration

Nd - Na is zero.



Graded impurity distributions

Potential

The presence of an electric field can be seen 

directly from this energy band diagram, as well as 

from the particle model discussed above. 

Since Figure 4.lb represents the energy-band 

diagram of an electron, the energy of an electron is 

measured by its distance above the Fermi level on 

the band diagram.

The separation of the conduction band edge from 

the Fermi level represents the potential energy of 

an electron while the energy above the conduction-

band edge represents kinetic energy

Because the electric potential 𝛷 at any point is 

related to the potential energy by the charge -q, the 

potential can be written



Diffusion Current

Drift current

→ flows when an electric field is applied and which follows Ohm's law. Ohmic 

behavior is observed in metals and semiconductors and is probably familiar from 

direct experience

→ if a spatial variation of carrier energies or densities exists within the material.

Additional important component of current in semiconductor

Diffusion current.

*Diffusion current is generally not an important consideration in metals because 

metals have very high conductivities

The lower conductivity and the possibility of nonuniform densities of carriers 

and of carrier energies makes diffusion an important process affecting current 

flow in semiconductors

Origin of diffusion current.

From Chap. 1



Diffusion Current

For an electron density that increases with increasing x, the gradient is positive,

as is the current. 

Because electrons to flow from the higher density region at the right to the lower density 

region at the left and current flows in the direction opposite to that of the electron
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Electron density at uniform temperature

0 λ- λ

n(- λ) 

n(0)

n(λ)

𝐽𝑛 = 𝑞λ𝑣𝑡ℎ
𝑑𝑛

𝑑𝑥

λ = 𝑣𝑡ℎτ𝑐𝑛Using 

𝐽𝑛 = 𝑞
𝑘𝑇

𝑞
𝜇𝑛

𝑑𝑛

𝑑𝑥

Diffusion coefficient (diffusivity)

𝐷𝑛 =
𝑘𝑇

𝑞
𝜇𝑛 ----- Einstein relation 

Relationship between two important constant (diffusivity & mobility)

→ Related to the carrier transport by diffusion and drift in semicondoctor

From Chap. 1



Diffusion Current

The current due to carrier diffusion is

𝐽𝑛 = −𝑞𝐹 = 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥

→ Diffusion current results from the random thermal   

motion of carriers in a concentration gradient

𝐽𝑝 = 𝑞𝐹 = −𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥

When an electric field is applied to a semiconductor with concentration gradient

➔ Total current at any point is the sum of the drift and diffusion components

𝐽𝑛 = 𝑞𝜇𝑛𝑛𝐸 + 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥 → Electron current 

𝐽𝑝 = 𝑞𝜇𝑝𝑝𝐸 − 𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥 → Hole current

Total conduction current

𝐽𝑐𝑜𝑛𝑑 = 𝐽𝑛 + 𝐽𝑝

𝐽𝑛 = 𝑞𝐷𝑛
𝑑𝑛

𝑑𝑥

𝐽𝑛 = 𝑞𝑛𝜇𝑛 EDrift : 

Diffusion :

𝐽𝑝 = −𝑞𝐷𝑝
𝑑𝑝

𝑑𝑥

𝐽𝑝 = 𝑞𝑝𝜇𝑝 EDrift : 

Diffusion :

From Chap. 1



Graded impurity distributions

Potential

The reference for potential energy is arbitrary, 

however, and we may shift it from Ec to Ei. 

Because Ei is usually used for the reference, we 

will not subscript the symbol 𝛷 for potential which 

now is written

as shown in Figure 4.lb. 

According to this definition the potential is

positive for an n-type semiconductor (Ef > Ei) and 

negative for p-type material (Ef < Ei).



Graded impurity distributions

Field

Because the electric field is the negative of the 

spatial gradient of the potential,

the field ℇx is found from Equation 4.1.2 to be

Thus, a spatial variation of the band edges (and the 

intrinsic Fermi level) implies that a non-zero electric 

field exists in the semiconductor

At point b of Figure 4.lb, dEi /dx is negative, and 

the field is directed toward the left. The resulting 

force on negatively charged electrons is toward 

the right; consequently, the field provides a force 

that opposes the tendency of electrons to diffuse 

from the high-concentration region at c to the low 

concentration region at a.



Graded impurity distributions

Field

The electric field and the graded impurity distribution.

In thermal equilibrium, no current flows at any point in the semiconductor

because thermal equilibrium requires that every process and its inverse are in balance, the 

electron current and the hole current must each be zero at thermal equilibrium

Total electron current

This expression is applicable both in n-type material, where the 

electrons are majority carriers, and in a p-type semiconductor, where 

they are minority carriers.

drift current diffusion current

When the total electron current is zero, the two terms are exactly balanced.

Because Jn = 0, we can solve for the field in terms of the electron concentration and its gradient

for electron current for hole current
we can find the mobile carrier concentrations and

their gradients, we know the fields in the semiconductor



Graded impurity distributions

Field

Considering the relation between the electron density and the position of the band edge (or 

equivalently the intrinsic Fermi level) with respect to the Fermi level

Consider an electron at x2 with an energy E. 

A portion E - Ec of this energy is kinetic energy;

the remainder is potential energy.

The electron can move freely in the region between 

x1 and x4 because it has energy greater than the 

potential energy associated with this region

The electron would require more potential energy 

than its total energy to enter the region to the left of

xl or to the right of x4

Consequently, it is classically forbidden to enter 

these regions, and there is a potential barrier to the 

motion of the electrons.



Graded impurity distributions

Field

Relation between the number of carriers at any two points in the material and the energy 

band structure

the electron density at x2 is less than that at x3

because the separation between the conduction-band 

edge and the Fermi level is greater at x2.

Because (For electron)

Integrating this equation between any two points-for

example, from x2 to x3

exponential form

The ratio of the carrier densities depends on the potential difference 

Between the two points



Graded impurity distributions

Poisson's Equation

the solution to Poisson's equation is the potential field caused by a given electric charge or 

mass density distribution

Where, ρ is the space-charge density and the dopant atoms are assumed to be completely ionized.

Poisson's equation can then be rewritten in the form

Show page 179 for specific calculation

the differential equation for the potential distribution in an arbitrarily doped semiconductor.

we consider two special cases

the dopant concentration varies gradually with position as, for example, the donor 

distribution within a diffused n-type region

abrupt spatial variations of dopant concentration

as, for example, in the junction between p-type and n-type semiconductor regions



The pn junction

Device building block

Metal Semiconductors

n-type

Semiconductors

p-type

Semiconductors

Metal Semiconductor

oxide

▪ Schottky Diode 

▪ Diode

▪ Light-emitting diode 

▪ Laser diode

▪ Photodiode 

▪ Solar cell

▪ bipolar junction transistor

▪MOS capacitor

▪MOS field-effect transistor

Metal

n-Semi.

Insulator

p-type n-type p-type 

p-Semi.



The pn junction

To build a model for the pn junction

• Considering initially separated n- and p-type 

semiconductor crystals of the same material

• When these are brought into intimate contact as shown in 

Figure 4.3b, the large difference in electron concentrations 

between the two materials causes electrons to flow from the 

n-type semiconductor into the p-type semiconductor and 

holes to flow from the p-type region into the n-type region.

• As these mobile carriers move into the oppositely doped 

material, they leave behind uncompensated dopant 

atoms near the junction, causing an electric field

• The field lines extend from the donor ions on the n-type side 

of the junction to the acceptor ions on the p-type side 

(Figure 4.3c).

• This field creates a potential barrier between the two types of 

material.

• When equilibrium is reached, the magnitude of the field is 

such that the tendency of electrons to diffuse from the n-

type region into the p-type region is exactly balanced by 

the tendency of electrons to drift in the opposite direction 

under the influence of the built-in field.



The pn junction

Potential barrier

① PN junction이 생성되었다고 가정

② 전자와 정공의 농도 차이로 인해서 접합을 향해서 확산

③ 전자와 정공이 서로 만나 재결합(recombination)으로 사라짐. 

④ 도펀트 이온만 노출되며 공핍영역에 전기장 형성

⑤ 도펀트 이온에 의한 전기장방향과 캐리어(전자 또는 정공)에 의한 확산 전류는

서로 반대

⑥ 확산 전류를 막아서 net current = 0이 될 때까지 전기장 증가

⑦ 확산과 드리프트 간 전류가 평형이 발생하며 그 때, built-in potential 결정



The pn junction

To build a model for the pn junction

• Considering initially separated n- and p-type 

semiconductor crystals of the same material

• When these are brought into intimate contact as shown in 

Figure 4.3b, the large difference in electron concentrations 

between the two materials causes electrons to flow from the 

n-type semiconductor into the p-type semiconductor and 

holes to flow from the p-type region into the n-type region.

• As these mobile carriers move into the oppositely doped 

material, they leave behind uncompensated dopant 

atoms near the junction, causing an electric field

• The field lines extend from the donor ions on the n-type side 

of the junction to the acceptor ions on the p-type side 

(Figure 4.3c).

• This field creates a potential barrier between the two types of 

material.

• When equilibrium is reached, the magnitude of the field is 

such that the tendency of electrons to diffuse from the n-

type region into the p-type region is exactly balanced by 

the tendency of electrons to drift in the opposite direction 

under the influence of the built-in field.



The pn junction

Junction formation

Semiconductor lattice with acceptor ions and 

free holes

Semiconductor lattice with donor ions and 

free electrons

P-type semiconductor N-type semiconductor

Acceptor

-

Donor

+



The pn junction

Junction formation : Depletion region

Depletion region : region where free carriers (e, h) are depleted

hole electron Positive charge

region

Negative charge

region

Neutral

region

Neutral

region

Depletion region or

Space charge region

Built in potential

Diode (rectifying)

Metallurgical 
junction

h+ diffusion

e- diffusion

NA if ND ~ 2NA



The pn junction

Junction formation : depletion region (space charge region)

Space charges

+

-

ρ : the space-charge density 

When, ND ~ 2NA



The pn junction

Neutral

region

Neutral

region

Dopant

distribution

Electrostatic 

potential 

distribution

Poisson’s equation 

Electric field 

distribution

Built-in potential

Depletion width

Junction formation

2

2
( )S
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d d q
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dx dx
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
 − = − = − − + −
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( )S
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d d q
N N p n
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
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
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E
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dx


 −E =

Junction formation : electric field in the space charge region



The pn junction

Junction formation (band diagram)

n-type

Semiconductors

p-type

Semiconductors

EC 

EV

EF

EC 

EV

EF

Before junction formation
After junction formation

np
+
+
+
+

-
-
-
-

E

EC 

EV

EF

EC 

EV

EF

Drift

Diffusion

Drift

Diffusion

Diffusion of e - & h+ due to concentration gradient

NA
- ND

+ 

Formation of space charge region due to ionized dopants

Electric field (E)  induced from n- to p-side

Drift current of of e - & h+



The pn junction

Equilibrium Fermi level (steady state : without any external excitation)

EC 

EV

EF

EC 

EV

EF

Drift

Diffusion

Drift

Diffusion
➔ No electron and hole current flow

➔ Drift current and diffusion current 

are canceled each other

( ) ( ) 0p p pJ J drift J diffusion= + =

For hole current at steady state

p p

dp
q p qD

dx
= −E

E

- idE
q

dx
−E =

1 idE

q dx
E =

p p

kT
D

q


 
=  
 

: Einstein relation

1
0i

p p

dE dp
q p kT

q dx dx
 

 
= − = 

 



The pn junction

Equilibrium Fermi level (steady state : without any external excitation)

0FdE

dx
=

0i
p p p

dE dp
J p kT

dx dx
 

 
= − = 

 

( ) /i FE E kT

ip n e
−

=

dp

dx

1 1i FdE dE
p

kT dx kT dx

 
= − 
 

1 1
0i i F

p p

dE dE dE
p kT p

dx kT dx kT dx
 

   
= − − =   
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0F
p

dE
p

dx
= =

For the condition of zero net electron and hole current flow, 

the Fermi level (EF) should be constant throughout the p-n junction 

0F
n n

dE
J n

dx
= =In the same way, 

( ) /1 1
i FE E kTi F

i

dE dE
n e

kT dx kT dx

− 
= − 
 



The pn junction

Poisson’s equation : electric field distribution in the junction

S

S

d

dx






→ Calculate the electric potential for a given charge distribution.


S


S

: Space charge density 

(sum of the charge carriers and ionized impurity)

➔ in the p-n junction : ρs = q (ND – NA + p - n)

: Dielectric permittivity (εrε0)  

Electrostatic potential (Ψ) and electric field (E )has a relation of ;

d

dx


 −E

2

2

d d

dx dx


= −

2

2
( )S

D A

S S

d d q
N N p n

dx dx



 


 − = − = − − + −

E

: Electrostatic potential (Ψ) and electric field (E ) distribution in the p-n junction.

E

E

εr : relative permittivity (Si : 11.9) 

ε0 : vacuum permittivity

(8.854x10-14 F/cm) 

This equation can be applied to all the 

region of p-n

Show slide 15



The pn junction

Built-in potential

→ Electrostatic potential difference between the p & n-neutral regions at thermal equilibrium

2

2
( )S

D A

S S

d d q
N N p n

dx dx



 


 − = − = − − + −

E

far away from the junction▪ In p-type neutral region :

Electrostatic potential of the p-neutral region with respect to 

Fermi level

1
( )

pp i F x xE E
q

−  − −

EC 

np +-
+-

ρ

+

-
0

-xp

xn

x
ND

NA

EV

EF

Ei

Depletion 
region

qΨp

qΨn

Vbi 

Neutral 
region  

Neutral 
region  

2

2
0

d

dx


= 0D AN N p n− + − =

0DN  p nand

AN p=
( ) /i FE E kT

i Ap n e N
−

= =

ln A
i F

i

N
E E kT

n
− =

➔

➔

ln A

i

NkT

q n

 
= −  

 

≫ (For p-type semiconductor)



The pn junction

Built-in potential

▪ In n-type neutral region : 0AN = n pand

1
( ) ln

n

D
n i F x x

i

NkT
E E

q q n


 
  − − =  

 

Electrostatic potential  of the n-neutral region with 

respect to Fermi level

Total electrostatic potential difference between the 

p- and n-side : built-in potential   ( Vbi )

2
ln A D

bi

i

N NkT
V

q n

 
=  

 

⇒As NA and ND increases, Vbi increases

2
ln ln lnD A A D

bi n p

i i i

N N N NkT kT kT
V

q n q n q n

     
=  − = + =     
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EC 
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ρ

+

-
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x
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NA
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Depletion 
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qΨp
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Neutral 
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Neutral 
region  

≫



The pn junction

Current-Voltage(I-V) characteristics of p-n junction 

I (mA)

V (V)

Forward 

conduction

Reverse 

breakdown

EC 

EV

EF

Ei
qΨp

qΨn

Vbi 
V = 0

Rectifying behavior 

⇒ Diode

Forward

V > 0

~ Vbi

EC 

EV

+ -
In

Ip

EC 

EV

Reverse

V < 0

-

+



The pn junction

Depletion region (space-charge region)

EC 

ρ

+

-
0

-xp

xn

x
ND

NA

EV

EF

Ei
qΨp

qΨn

Vbi 

Depletion 

region

In the depletion region : Mobile charges are completely 

depleted and the mobile charge density is zero.

np +-
+-

Depletion region Neutral region Neutral 

region  

p = n = 0

2

2
( )S

D A

S S

d q
N N p n

dx



 


 − = − − + −

Electrostatic potential in the depletion region

( ) ( )D A A D

S S

q q
N N N N

 
= − − = −

- Electrostatic potential in the depletion 

region varies with parabolic.

- Depends on dopant distribution (profile).



The pn junction

Impurity distribution in depletion region

+

-

ND-NA

x
+

-

(1) Abrupt junction (2) Linearly graded junction 

-

0-xn xp

x

+

ND-NA

x

ND-NA

ND-NA

x+

-

-W/2

W/2

⇒ Epitaxial growth ⇒ Diffusion or implantation

Approximate

2

2

S

S

d d

dx dx






 − = −

E

integrationintegration



The pn junction

Abrupt junction: Electric field distribution

-

0

-xp

xn

x+

ND-NA

-NA

ND

Depletion region

Neutral 

p-region

Neutral 

n-region

Space charge distribution

i) -xp ≤ x < 0

▪ Free carriers are totally depleted (n=p=0)

▪ NA≫ ND

2

2 A

S

d d q
N

dx dx 


= − =

ii) 0 < x ≤ xn

▪ Free carriers are totally depleted (n=p=0)

▪ ND≫ NA

2

2 D

S

d d q
N

dx dx 


= − = −

2

2
( )D A

S

d d q
N N p n

dx dx 


 − = − − + −

E

E
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The pn junction

Abrupt junction: Built in potential

Total potential variation in the depletion region : 

built-in potential Vbi

-

0

-xp

xn

x+

ND-NA

-NA

ND

Space charge distribution

Integration of electric field over the depletion region
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The pn junction

Abrupt junction: Electric field distribution

Space charge distribution i) -xp ≤ x < 0

ii) 0 < x ≤ xn

( ) A

S

qN
x dx


= −E

=
𝑞𝑁𝐷
𝜀𝑆
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𝜀𝑆
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D A

n p

S S

qN qN
x x

 
= = ⇒Maximum field

at x = 0 (junction)

 E (-xp) = 0

 E (xn) = 0

= −
𝑞𝑁𝐴
𝜀𝑆

𝑥 −
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The pn junction

Abrupt junction: Depletion layer width

Space charge distribution
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The pn junction

Abrupt junction: Deriving depletion layer width
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