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Preface to Nanotechnology: Principles and Practices

Materials

by combination of different elements in certain proportions, nature has produced a
number of gases, liquids, minerals and above all, the living world

Mankind too, ingeniously working, leamt to make a large number of materials and
even cast or shape them for desired functions or operations. Starting with stone
implements man learnt to separate metals and make alloys. He made wonderful

organic and inorganic materials.
use wood, metals, alloys, polymers etc. %_ S

directly taken from the nature and
some are man-made

v www.booklife.co.uk
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Preface to Nanotechnology: Principles and Practices

Materials nowadays

All the materials used today have a variety of functions, which is the fruit of skill and
intellect of many generations of mankind.

All this has led to wonderful electronic systems, communication tools, transport
vehicles, textile, utensils, architectural materials, medicines etc.

Why mankind has been used materials and tried to develop?

Mankind has been constantly trying to overcome its physical limitations

How? by inventing the appropriate materials and understanding nature’s aviation
system, man has been able to develop vehicles that run faster than a horse
and fly in the sky reaching a height impossible for a bird. He has
developed the communication and navigation systems, which take him or
his instruments to distant planets. He may not physically go everywhere
but he has tried ingeniously to get some knowledge of different planets,
stars or even the galaxies.

Applied Nanomaterials & - vices LAB.




Preface to Nanotechnology: Principles and Practices

For further development

Man needs more and more materials with controlled properties. He needs materials not
known before. He needs materials, which are highly efficient, often small in size and
novel.

» [nthe attempt of making lightweight and smaller and smaller electronic devices,
scientists _have reduced the size of materials to such an extent that it has reached
nanometric_dimensions.

At such a scale new phenomena are observed for practically all the materials
known so far, leading to novel devices and potential applications in different
fields from consumer goods to health related equipment.

Applied Nanomaterials & - vicés LAB.




Preface to Nanotechnology: Principles and Practices

History of Nanomaterials

Box 1: Milestones in Nanotechnology

1857—Michael Faraday synthesized gold colloids of nanosize

1915—W. Ostwald, a famous chemist, wrote a book ‘World of Neglected Dimensions’ in German

193 1—E. Ruska and M. Knoll developed the first electron microscope

1951—E. Miiller developed the Field Ion Microscope which enabled the imaging of atoms from the tip of
metallic samples

1959—R. Feynman delivered his now very famous talk ‘There is Plenty of Room at the Bottom’
pointing out to the scientists that reduced dimensionality of materials would create fascinating materials
1968—A.Y. Cho and J. Arthur developed Molecular Beam Epitaxy tech- nique for layer by layer growth
of materials

1970—L. Esaki demonstrated the quantum size effect (QSE) in semiconductors

1980—A.I. Akimov showed QSE in CdS and CdSe particles dispersed in glass, triggering the research on
nanoparticles

1981—G@G. Binnig and H. Rohrer developed the scanning tunnelling micro- scope (STM) by which atomic
resolution could be obtained. This was also followed by a family of scanning probe microscopes of
various types

1985—R.F. Curl, HW. Kroto and R.F. Smalley synthesized sixty atom carbon molecule, later named as
‘Fullerene’

1989—D.M. Eigler wrote letters ‘IBM’ using xenon atoms

1991—S. Iijima discovered ‘carbon nanotubes’

1999—C.A. Mirkin developed the ‘Dip Pen Lithography’

2000—D.M. Eigler devised ‘Quantum Mirage’ using Fe atoms on the copper substrate.

Electronics & Probes by Materials Engineeris



Beginning of Nanotechnology, Nanoscience

Preface to Nanotechnology: Principles and Practices

The terms ‘Nanotechnology’ and ‘Nanoscience’ are often used synonymously.
The literal meaning of ‘nano’ is ‘dwarf(‘=F 2 O)’ or an abnormally short person.
However in scientific language it is a billionth (10”) part of some unit scale, e.g.
nanometre or nanosecond mean 10°m or 107 s respectively.

Box 2
Factor Symbol Prefix Factor Symbol Prefix
10 18 a atto 10! da deka
10 15 f femto 102 h hecto
10 12 p pico 10° k kilo
109 n nano 100 M mega
10 6 u micro 10° G giga
10 3 m milli 1012 T tera
102 C centi 1015 p peta
101 d deci 1018 E exa

Nanometre is so small that if you imagine only ten atoms of hydrogen placed in a

line touching each other it will measure one nanometre.

Applied Nanomaterials & D

evices LAB.
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Preface to Nanotechnology: Principles and Practices

Beginning of Nanotechnology, Nanoscience

a qualitative idea on nanometre ~ ggx 3. Comparison of Different Objects

Diameter of the Sun 1,393,000 km
Diameter of the Earth 12,715 km
Height of Himalaya Mountain 8,848 m
’ - Height of a Man 1.65m
I
|
Virus 20-250 nm
Y,
O Cadmium Sulphide Nanoparticles 1-10 nm

Applied Nanomaterials & Dévices LAB.
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Nanotechnology

Nanotechnology is thus the technology of materials dealing with very small dimension
materials usually in the range of 1-100 nm.

» When at least one of the dimensions of any type of material 1s reduced below 100
nm, its mechanical, thermal, optical, magnetic and other properties change at some
size characteristic of that material. Thus within the same material one can get a

range of properties. . . L
Box 4: CdS Nanoparticles (Colour Change with Particle Size)

~ 2 nm ~ 3 nm ~ 4 nm ~ 6 nm

Not only the visual appearance but other properties also change dramatically.

Melting point for pure bulk solids 1s very sharply defined.

the melting point reduces with the particle size.

Therefore by changing the particle size of a material one can achieve a range of properties

€ vices LAB.




Preface to Nanotechnology: Principles and Practices

Nanotechnology

Nanotechnology is an interdisciplinary science. It needs Physics, Chemistry, Engineering,
Biology etc. so that its full potential can be exploited for the advantage of mankind.

What has been achieved in nanotechnology so far 1s only the tip of the iceberg.

To fully explore the potential of nanotechnology it is essential to know what are
nanomaterials, how and why do they differ from other materials, how to
synthesize/analyze the nanomaterials organize them and understand some
already proven application areas.

What we are gomg to learn!

Applied Nanomaterials & - vices LAB.




1. Introduction to Quantum Mechanics
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1. Introduction to Quantum Mechanics

1.1 Why quantum mechanics?

Nanotechnology we are concerned with natural and synthetic materials in the size range
of 1-100 nm.

® Classical, Newtonian mechanics or thermodynamics are not able to explain the
observed properties of materials.

[Box 1.1] some historical milestones, which have led to quantum mechanics

Box 1.1: Historical Milestones in the Development of Quantum Mechanics Pre-quantum Era

In 1669, Newton proposed that light had corpuscular or particle nature.

Huygen claimed in 1690 that light had a wave nature.

Kirchoff and others studied black body radiation around 1860.

Maxwell proposed (1873) theory of electromagnetic waves.

In 1803-04 Young performed double slit experiment, which showed that light had a wave nature.
In 1887, Heinrich Hertz produced and detected electromagnetic radiation.

Applied Nanomaterials & Devices LAB.
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1. Introduction to Quantum Mechanics

Box 1.1 (continued)

Old Quantum Theory Period

* In 1901, Max Planck showed that energy distribution in black body radiation could be explained
properly only if one considered that the radiation was quantized or had a particle nature.

* In 1905, Einstein proposed a theory of photoelectric effect which deci- sively proved that
quantum or particle nature was associated with electro- magnetic waves.

« Compton effect (1920) could be explained only when particle nature of electromagnetic radiation
was considered, supporting Max Planck’s and Finstein’s theories. Particles of electromagnetic
waves were identified as ‘photons’.

* De Broglie (1923) argued that if electromagnetic waves were particles (photons) then why not
particles have waves associated with them?

* Bohr’s atom model (1913) with stationary states (why electrons should have some fixed
energies) could be explained with de Broglie hypothesis.

Modern Quantum Theory Begins

» Heisenberg introduced (1925) Matrix Mechanics.

* Schrodinger equation (1926) gave the firm foundation for de Broglie hypothesis and later
explained the electronic structure of atoms, molecules and solids.

* Davisson and Germer showed in 1927 that electrons can be diffracted. Regularly spaced atoms
constitute multi-slit analogue of Young’s double slit experiment.

 Heisenberg proposed uncertainty principle in 1928.

This marks the beginning of Quantum Mechanics as it is practiced now!

Applied Nanomaterials & Dévices LAB.
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1. Introduction to Quantum Mechanics

* Black body radiation

When any radiation is incident on a body, what will it do? It will either reflect (1),
absorb (a) or transmit (t), though partially, so thatr + a +t = 1. A material is called a
‘black body’

Box 1.3: Black Body Radiation
All materials absorb and emit energy. The intensity of energy
radiated and absorbed by a body are equal if the object is in
thermal equilibrium with its surrounding. However if the body is
above the temperature of its surrounding then it emits radiation,
which is known as black body radiation. Black body is thus an
object that can absorb all radiation incident on it (no reflection
or transmission!) or emits all radiation when above the
temperature of the surrounding. Typical black body spectra are
illustrated in Fig. 1.1.

Total intensity of radiation (area under the curve) and intensities

at different emission wavelengths of a perfect black body Fig. 1.1 Spectra of Black body radiation. Note that as
the temperature increases, the spectral intensity

irrespective of its material depend on the temperature. In increases and maximum intensity shifts to shorter

practice a cavity with a small hole can act like a black body. wavelength. 71, T and T3 are different temperatures
in the increasing order

Intensity

Wavelength A

Applied Nanomaterials & Devices LAB.
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1. Introduction to Quantum Mechanics

* Black body radiation

If it absorbs all radiation incident on it without reflecting or transmitting it.
When a black body is heated, it gives out a spectrum as shown i Fig. 1.1.
The black body spectrum spreads over a large range of wavelengths and has a
maximum in the intensity.

Experiments on black body radiation led Stefan (1879) and
Boltzman (1884) to establish Stefan-Boltzman law.

=
W
=
&
. . .. c
* According to this law, the total radiation from a
black body is proportional to the fourth power of
absolute temperature
Wavelength A
4
E =oT l;ig. 1.1 Spectra of Black lﬂody radiatliqn. Note that as
E: the intensity of total radiation, incroases and maximum intenshy shifis fo shorter
T the absolute temperature mat\l/qi:l?gcgrt}elé s]; rll’g Térggf Tsare different temperatures

o: Stefan’s constant (6 = 5.669 X 108 W/m?)

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

* Black body radiation (by Wien)
As the temperature of the black body increased, the maximum in the black body
spectrum shifted to shorter wavelength or higher energy

I Compare charcoal or iron.

- At room temperature, they look black.

- If we heat these materials then what happens? First
they look faint red, then they change to bright red
and then become bright yellow or white.

[ntensity

“Wavelength is getting shorter”

Wavelength A

Fig. 1.1 Spectra of Black body radiation. Note that as
the temperature increases, the spectral intensity
increases and maximum intensity shifts to shorter
wavelength. 71, T2 and T3 are different temperatures

in the increasing order

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

* Wavelength vs Color

- Increasing energy
Increasing wavelength >
0.0001 nm 0.01 nm 10nm 1000 nm 0.01 cm 1 cm 1 m 100 m
| | | I I I
Gamma rays Xrays Uliro- Infrared Radio waves
violet

Radar TV FM AM

400 nm 500 nm 600 nm 700 nm
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1. Introduction to Quantum Mechanics

* Black body radiation (by Wien)

Wien’s precise experiments on black body radiation resulted into a law

Amax ¥ T = Wien displacement constant == 2. 898 x 107 mK

Ainax 18 the wavelength at which maximum intensity R
occurs for a black body held at temperature 7

The intensity varied with wavelength as

PR —b
S Eh (}.T)

Intensity

Total energy radiated per unit time, per unit

surface area is given by

0
Fig. 1.1 Spectra of Black body radiation. Note that as
the temperature increases, the spectral intensity
increases and maximum intensity shifts to shorter

E= [Ear | R
E Xd}”.ls the rate of energy emission per unit wavelength. T1, T2 and T3 are different temperatures
0 area in the wavelength range A to A + dA in the increasing order

Wavelength A

» This formula holds good only for short wavelength side of the spectrum

Applied Nanomaterials &
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1. Introduction to Quantum Mechanics

 Black body radiation (by Rayleigh and Jean)

2c
Ey, = —41{' T ‘c’ 1s velocity of light
A ‘k’ 1s Boltzman constant
*This equation could explain the long wavelength side of the black body spectrum
not for short wavelength

* Black body radiation (by Planck, 1901)

2mhc? |
A5 (ehe/AKT_])

Intensity

‘h’ 1s Planck’s constant

Planck proposed that radiation cannot be absorbed or
emitted continuously.

The absorption or emission of radiation through some

quantum of energy or ‘quanta’ like particles, later
Fig. 1.1 Spectra of Black body radiation. Note that as
termed as phOtonS. the temperature increases, the spectral intensity

increases and maximum intensity shifts to shorter
wavelength. 71, 7> and T3 are different temperatures
in the increasing order

Wavelength A

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

* Black body radiation (by Planck, 1901)

2mhc? |
A5 (ehe/AKT_])

E, =

‘h’ 1s Planck’s constant

Energy of each quantum of radiation (absorbed or emitted) was assumed
to be hv, where v is the frequency of absorbed or emitted radiation.

The total radiated energy

E:’TEJ{'J'
15¢2h3

- This equation is valid at short and long wavelengths equally.

4

Planck’s equation successfully explained all the regions of Black Body spectrum as
well as previous findings and laws

Planck’s 1dea that electromagnetic radiation should be considered as quantum of
radiation turned out to be a milestone in the development of modern science




1. Introduction to Quantum Mechanics

Box 1.4: Max Planck (1858-1947)
Max Planck was born in Kiel, Germany, in the year 1858. He studied physics in Munich
as well as Berlin, Germany. He became a Professor of Theoretical Physics in 1892 in
Berlin University. There he discovered in 1899 the fundamental constant ‘4’ or Planck’s
constant named after him. Immediately in 1900 he discovered what is known now as
‘Planck’s law of black body radiation’.

This law became the foundation of quantum theory. Max Planck was

awarded the Nobel Prize for
Physics in 1918. From 1930 to 1937, Planck was head of the Kaiser
Wilhelm Gesellschaft zur Fordernen der Wissenschaften (KWG, Emperor
Wilhelm Society for the Advancement of Science) which was renamed
after his death on 4th October 1947 in Gotingen, Germany as Max
Planck Gesellschaft zur Forderung der Wissenschaften (MPG, Max
Planck Society for the Advancement of Science). This institute contin-
ues to be one of the most important institutes for science in Germany.

Applied Nanomaterials & Dévices LAB.
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1. Introduction to Quantum Mechanics

» Assumption on the existence of photons or quanta of electromagnetic radiation

» [ 1. Photoelectric effect
2. Compton effect

1. Photoelectric effect

Box 1.5: Photoelectric Effect Phatons
If two metal electrodes are placed in an evacuated
tube, separated by a short distance, as illustrated in

Fig. 1.2a then current flows in the circuit if cathode < | — D  Anode

is irradiated with UV to visible light. This is known
as photoelectric effect. It is easy to understand that

the circuit is completed if electrons are emitted e
: : . 7 I

from cathode reaching the anode on illumination of 'Hf’ J A

the cathode. Einstein successfully explained in 1905 1 v

the observations by assuming that the incident beam
of light behaved like photons or quanta of radiation
proposed by Max Planck.

Fig. 1.2 (a) Circuit diagram to observe
photoelectric effect

Applied Nanomaterials & Devices LAB.
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1. Introduction to Quantum Mechanics

1. Photoelectric effect

1.Photoelectric current (I) is proportional to the intensity of light LS int2
(Int) falling on the cathode (see Fig. 1.2b).

2. There exists a threshold frequency dependent on the cathode int 1
material, which is necessary to emit photoelectrons. If light of /—
lesser frequency is used then, even for any high intensity, no
photoelectrons can be emitted.

3.This implies that there is a maximum kinetic energy which is
necessary to produce photoelectric current.

Int 2

Current

AN

Anode Voltage

Fig. 1.2 (b) Variation of current due to
photoelectrons. Here ‘Int’ is the

I intensity of light
kma:-; = eVy = _mpl mtensity of lig
2
=
21 v>u>v,
3
o
where V) is the stopping potential, e and m are electron charge and mass —
respectively. The velocity is v.
Even if anode is negative (V)), electrons with maximum kinetic energy V.
eV can reach the anode. v,
Maximum energy of emitted photoelectrons does not depend upon the Vv v Anode Voltage
intensity of incident light but the frequency used as illustrated in Fig. 1.3. Toonr
. . . Fig. 1.3 Negative anode voltage Vo denotes
4. Emitted photoelectrons have maximum energy (corresponding 8 s >

) N ) the maximum kinetic energy the electrons
to —Vo) which depends upon the frequency of incident light. can have in a photoemission process. It

i i ‘ — depends on the frequency v of the incident
Applied Nanomaterials & Dévices LAB. light




1. Introduction to Quantum Mechanics

1. Photoelectric effect

Number of ejected photoelectrons depends upon the
intensity of light but the maximum kinetic energy of ejected
photoelectrons depends upon the frequency of light. There
1s a minimum frequency ‘v,’ necessary to eject the
photoelectrons which depends upon the material. This can
be stated as

Maximum kinetic energy = hv — hy,

where /v 1s the energy larger than minimum energy /v, required
to eject the photoelectron (Fig. 1.4).

Applied Nanomaterials &

Electronics & Probes by Materials En
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Fig. 1.4 Maximum kinetic energy depends
upon the frequency of incident light and the
material of cathode. Note that the lines have
same slope (see Eq. 1.9). Here Caand W are
calcium and tungsten cathodes respectively.
@) and @ 7 are work functions of Ca and W
respectively. Work function is a property of
the material and denotes the amount of
energy required to remove the electron
from that material




1. Introduction to Quantum Mechanics

» Assumption on the existence of photons or quanta of electromagnetic radiation

» [ 1. Photoelectric effect
2. Compton effect

2. Compton effect

Box 1.6: Compton Scattering

X-rays with sufficiently high energy, when incident on a
stationary electron as Compton imagined in 1920, can change
their own direction as well as wavelength to longer side,
reducing their energy. Reduced energy is imparted to the
electron which gains a momentum p=mv where m is the mass
of the electron and v is the velocity gained by the electron.

.
Electro

where v and v’ are the frequencies of incident

K.E of electron = hv — hv X-rays before and after scattering

Fig. 1.5 Schematic of Compton
effectv <o’

From conservation of momentum, momentum gained by the electron must be same as
that lost by X-rays or we need to assume that X-rays which are electromagnetic
waves have momentum p = A/A and X-rays behave as particles or photons.

Applied Nanomaterials & Dévices LAB.




1. Introduction to Quantum Mechanics

* Wave-particle duality

<Particle>

Einstein’s theory of photoelectric effect and Compton effect could be explained only
if one assumed the existence of photons or quanta of electromagnetic radiation.

<Wave>

Electromagnetic radiation also exhibits interference of light. This 1s quite evident
from Young’s diffraction experiments with single and double slits.

» Depends upon the type of experiment that electromagnetic radiation shows itself
as waves or particles. Waves are continuous and particles are discrete in
nature.

The behaviour of electromagnetic waves sometimes as waves and sometimes as
particles 1s termed as ‘wave-particle duality’

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

1.2 Matter Waves (&2 1})

* From wave-particle duality of electromagnetic wave....

if electromagnetic waves sometimes behave like particles (photons) then why not
particles behave like waves?

- de Broglie in 1923

postulated that all the matter must have associated waves with wavelength given by

h
= — where & = Planck’s constant, p = magnitude of the momentum,
P my m = mass of the particle and v = velocity of the particle.

=2

de Broglie relation and wavelength (1) is known as de Broglie wavelength of
the particle

a very effective way of explaining various properties of atoms and subatomic
particles like electrons, protons and neutrons.

“Not go deep inside this lecture”

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

1.3 Heisenberg’s Uncertainty Principle (5273 42| &l 2|)

- No classical analogue but is one of the basic concepts in quantum mechanics.

If we have a source of monochromatic light (single wavelength) at
the back of two slits as shown in Fig. 1.6, we would obtain a
diffraction pattern i.e. bands of dark and light areas.

Dark bands correspond to the regions
where light does not strike and light

A
areas correspond to areas where light
1s able to reach. i3 >)>

Replace now the source of light with source
of mono energetic electrons from an electron
gun.

Time

We would get the diffraction pattern of light

and dark re gions by exposure of phOtO graphic Fig. 1.6 (a) Schematic diagram to obtain diffraction
pattern (slits S1 and S2) on the photographic plate P (one

plate to electrons. may use some counter also to detect the intensity). One
can use photons or electrons as the source. (b) Electron
diffraction pattern for change in exposure (counting) time

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

- If we make few more experiments by reducing the electron beam intensity, we can see
some interesting effect. What happen?

we would see blurred interference pattern and with further reduction of electron beam
intensity we may get only a couple of spots and no bands of light and dark areas.

Electrons appear to have gone to places where intensity maxima appear in diffraction
pattern

Very large, precision would be lost and we would
not know through which slit the electron came 4
out.

In other words we cannot precisely know position i DDD

and momentum of the electron simultaneously

with arbitrary accuracy.

Time

If we reduce the momentum uncertainty (using
long wavelength), position becomes uncertain and
if we measure the position with certainty using

hort 1 th th t b Fig. 1.6 (a) Schematic diagram to obtain diffraction
SN0 W?WG cng - €1 mor_nen um ccomes pattern (slits S1 and S2) on the photographic plate P (one
uncertain dGStI'OYHIg the diffraction pattern. may use some counter also to detect the intensity). One

can use photons or electrons as the source. (b) Electron
diffraction pattern for change in exposure (counting) time

Applied Nanomaterials &
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1. Introduction to Quantum Mechanics

- It 1s not possible to keep both pesition and momentum measurement precise, simultaneously

Precise measurement of one disturbs the other measurement.

h

21

Ax.Ap =

Ax is the dispersion (= f < (X—<x =) ;~) in the measurement of position in x direction and p is the dispersion in the
simultaneous measurement of x component of momentum of a particle

In general, Heisenberg’s uncertainty

principle states that “it is impossible to . 9)

determine precisely and simultaneously the B
values of both the members of a particular

pair_of physical variables such as position
components in a particular direction and
momentum in that direction, energy of a

bound state and 1ts decay Fig. 1.6 (a) Schematic diagram to obtain diffraction

time etc.” pattern (slits S1 and S2) on the photographic plate P (one
may use some counter also to detect the intensity). One
can use photons or electrons as the source. (b) Electron
diffraction pattern for change in exposure (counting) time

Time

Applied Nanomaterials & Dévicés LAB.

Electronics & Probes by Materials Engi



1. Introduction to Quantum Mechanics

1.4 Schrodinger Equation

* Comparison between classical and quantum mechanics

Classical Mechanics Quantum Mechanics

1)
2)

3)

4)

It deals with macroscopic particles
It is based upon Newton’s laws of motion

It is based on Maxwell’s electromagnetic
wave theory according to which any amount
of energy may be emitted or absorbed
continuously

The state of a system is defined by specifying
all the forces acting on the particles as well as
their positions and velocities(moment). The
future state then can be predicted with
certainty

The study of forces acting on bodies whether at
rest or in motion

1)

2)

3)

4)

It deals with microscopic or nanoscopic
particles

It takes into account Heisenberg's uncertainty
principle and de Broglie concept of dual
nature of matter (particle nature and wave
nature)

It is based on Planck’s quantum theory
according to which only discrete values of
energy are emitted or absorbed

It gives probabilities of finding the particles
at various locations in space

The study of the discrete nature of phenomena at
the atomic and subatomic level

In classical mechanics, use Newton’s equations to determine the position of a given particle under some
conditions like its speed, initial velocity etc.

In quantum mechanics, use Schrodinger equation to understand the behaviour of subatomic particles

Applied Nanomaterials & Devices LAB.
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1. Introduction to Quantum Mechanics

1.4 Schrodinger Equation

For a free particle, in one dimension, time dependent Schrodinger equation is as follows:

R oy (x.t) ., dl(x.1)
=ih—

Im dx2 At r(x, 1) is the wave function of particle of mass m

neglect the potential energy / and assume that

EEJ{.E .
E= =hw e kineti fthe particl
m e kinetic energy of the particle.
. . ) h-z ﬁ'j .
E = kinetic energy + potential energy | E = 5 + ¥

* One dimensional form of Schrodinger equation

B P (x. 1) dr(x. 1)

dt

+ Vix.t)y(x.t)=1ih

2m dx 2




1. Introduction to Quantum Mechanics

* Three dimensional form of Schrodinger equation )
(put x, y, z axis)

_K 7 a2 92 92
+ T o0 (x,y,z.e) + Vix,y.z.e)p(x, v, z.t)
2m (E}xi dy? g ) b, ) (x. ] r(x.

_ v x.5.2.0)
= i a!'

- We can use Laplacian notation d* d* d°

and r for (x, y, 2)

* Time-dependent Schrodinger equation in three dimensions

_h? dr (r, t)
- I_ — _F WY
"m? Pre)+Vire)pire)=ih .

Applied Nanomaterlols & Dévices LAB.




1. Introduction to Quantum Mechanics

* Time independent Schrodinger equation in one dimension

Vi(x.t) = V(x) *In case the potential energy of a particle does not change
o ' with time (as in case of energy states of electrons in an atom)

= IV i e = i

Assuming that wave function y(x, f) can be separated into two parts viz. one varying with
position and the other with time

Wix.t) =P(x)0(r)

—h? d>®(x) _ de(r)
1:_.-"' - . — - .
Emﬂl{” e + Vix)®(x)0(t)| =|i hd(x) 7
| e | ik dew
o 2md(x) dx? M= Bi(t) dr

A A

only position dependent —— — only time dependent




1. Introduction to Quantum Mechanics

each side of the equation must be a constant, say 4

Hd(x) ik do(r)
: — + V(x)|=|—=
2mbix) dx? B(e) di
R dre(x) ik do()
I;" X) = .n"" = - 5l
» 2md(x) dx? + V@) B(t) dr A —he - (x, 1) _ ,‘ﬁa‘l’ (x.1)
2m  axr it
Solve, B(r) = H{G}E:H_r where 6(0) is 8(1) at time = 0. 2m
dr(x.r) ih dO(r)
From ik dla; = Ey(x.1) and 0 dr
L de(r) . di o iEt
at x =0. This implies that 4 = F 8 (1) = —!EF Integrating it, ~ B(1) = exp ( F )
o . -h* d*®(x)
Substituting 4 with £ of Vix)= A .
& 2m®(x) dx? +Vix) —h= d P (x) V() = E
. — 2m®(x) dx? T
®» One dimensional, time independent Schrédinger equation . )
Applied Nanomaterials & Dévices LAB.

+ V(x)P(x) = Ed®(x)
2m

dx?




1. Introduction to Quantum Mechanics

* Three dimensional, time independent Schrodinger equation

Wir.t) =P (r)®(r)

~

—h" 5 .
,}—"?"1&{1'}! + V(r)y(r) = Ei(r)
2m

In order to determine the energy states of a particle it is necessary to know the
form of potential V' and how particle amplitude varies in space or y(r)

There may be a number of wave functions satisfying Schrodinger equation, but all may not be
able to describe a given situation.

The acceptable wave function should satisfy physical boundary conditions.

It is necessary that y should satisfy following conditions so that using Schrédinger equation
one can obtain the realistic values of energy

Box 1.12: Physical Interpretation of de Broglie Wave

I. The wave function r(r, 1) is useful to determine the probability of finding
a moving particle.

2. r(r, f) may be complex.

3. W r, 0| is the probability of finding the particle at time f at a point given
by r in real space.

4. As the particle should be found somewhere in space it can be obtained
using the normalization condition | [\(r, O’ dt=1.

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

1.5 Electron Confinement

Nano structured materials have at least one of the dimensions in the range of 1-100 nm

» properties of materials can be understood using quantum mechanics

To understand various properties even in case of bulk solids we need to understand the
electron properties which are subatomic particles

<Confinement of a particle>

in one (1D) dimension (freedom in 2D),
in two(2D) dimensions (freedom in 1D)
in all three(3D) dimensions (no freedom in any direction or 0D material).

no confinement 1D confinement 2D confinement 3D confmemem
bulk Q-well/ultrathin film Q-wire Q-do

(3D materials) (2D materials) (1D materials) 0D material)

# _.%1 —:}&-n(
2 n 1
n n ¥ t”/

z VA

2D quantum wells 1D wire 0D quantum dot
Applied Nanomaterlols & DeVICes LAB. (thin film) (wire) (nanoparticles)
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1. Introduction to Quantum Mechanics

1.5.1 Particle in a Box

Consider a box of length *a” such that

Potential =10
and V

o< x <a
oo ifx<=0o0orx>a

Energy states of the particle of mass m can be obtained using time independent

Schrodinger equation for one dimension

_H? ﬂz

2m dx2

(x)lrix) = Edix)

Let Jr(x) have a general form as

1 1
2mE N\ ? 2mEXNT
Jrix) = A s;in( — ) x+ B cc:rs;( —~ ) X

_________________________________________________________________________________

L J



1. Introduction to Quantum Mechanics

1.5.1 Particle in a Box

As the particle exists only inside the box, wavefunction x<0 x>a
should not exist outside the box and should be zero at the V= V=0 V=oo
boundaries 0 a x

Fig. 1.7 One dimensional

1t1 tential b
<Boundary condition> potential box

At x= 0, boundary condition r(x) = 0 leads to B= .

1 1
. . 2ZmE T 2mE . . [2mE\?
r(x) = Asin ( , ) X + B cos ( i ) X » Pix) = A sm( 7 ) X

fil

At x = a. boundary condition \r(a) = 0 leads to

1 1 1
2mE\? 2mE\? . 2ZmE\?
Prix) = Asin( = ) x + Bcos ( = ) x W | Ya)=0= Asm( =) ) a
t_— L T

Applied Nanomaterlols & Devices LAB.




1. Introduction to Quantum Mechanics

1.5.1 Particle in a Box

_____________

/ 1 :]_\ 1 =<0 x=a
) 2mE N
But ‘a’ 1s not zero ria) =0 = Aun: a V= V=0 V=oo
I W ) >
’/’ '----_,’ ------ I:} a £
1 ‘,»‘/ 1 A// Fig. 1.7 One dimensional
 f2mE\z 2mE\:z wheren=0,1,2.3, ... potential box
sin = a=~0 or — | a
;2 2

» niEint nih?
8 2ma? Bmal

___________________________________

2mE | . AT |
Wix) = Aun( ) x Y, = Asin (?]1

hl

*

(¢)
Pl
N
_Y_
£0
rir
of
oo

= ool nofitet 58 U2 28 E

‘n’ is quantum number (& A})

Applied Nanomaterials & Devices LAB.




1. Introduction to Quantum Mechanics

1.5.1 Particle in a Box

___________________________________

M
1'I'r?| = A sin (—) X x<0 x>a
il
L o e e 1 V= v=0 V=2c
*UA7L7HE = e o8& L0 n ofiet S8 222 278 0 a >

Fig. 1.7 One dimensional

‘n’ is quantum number (Y AF) Alb
potential box

n?iin?  nih?

Although n can take any integer value according to £, = Tmal . 8mal

in practice n = 0 and y,=0 are not allowed inside the box.
because, if allowed, | ¥ |2 would be 0 and probability of finding the particle inside
the box would be zero.

w cannot be zero inside the box. Therefore » takes the valuesn=1,2,3,.....

Applied Nonomaterlals & Deévices LAB.




1. Introduction to Quantum Mechanics

1.5.1 Particle in a Box

E nihim? nih?
" 2ma?  8ma?

- Energies of particle in a one dimensional potential box ’

. . . . Fig. 1.7 One dimensional
are quantized and can be illustrated as in Fig. 1.8a. :

potential box

- Corresponding wave functions and probabilities of different states of
particle in the box would look like those in Fig. 1.8b, ¢

a b c

/\ A bl
N4

7 /_\/_\
n=2 W, P |

n=1 s, T~ b [

Fig. 1.8 (a) Quantized energy states, (b) corresponding wavefunctions and (c) probability of
finding the particle at different locations between 0" and “a” in the box

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

1.5.2 Density of State
Density of states D(E) 1is defined as the number of states per unit energy range

* Consider energy as is given for a particle in a 1D box

(Henceforth we drop suffix of £)

, h?

E,.=n =
" 8Sma’

5.
dE = - ~2n.dn
Ra-
dn | sma’ | _a [2m
dE| K2 2n” RV E
p(E) = I o 12

- dE

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

1.5.2 Density of State
* Density of States for a Zero Dimensional (0D) Solid

A zero dimensional solid in which electron is confined in

a three dimensional potential box with extremely small
(<100 nm) length, breadth and height as a OD solid
z
discrete energy levels as discussed above with density of states
dN _ = >
] dE Z

Fig. 1.9 Density of states for a
particle in a zero dimensional solid

where z; are discrete energy levels and & is Dirac function. The density of states as
a function of energy would appear as illustrated in Fig. 1.9.

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

1.5.2 Density of State
* Density of States in a One Dimensional (1D) Potential Box, Wire
A particle confined in one dimension is like a particle in a

one dimensional potential well.
The potential in two directions 1s ifinitely large but length

1s not very small

ﬂr."l'l'r {7
DE)=— =Y 8E—g)"/
. d gi=E | o

where ¢; are discrete energy levels. Figure 1.10 graphically illustrates nature of
density of states for a one dimensional solid.

Density

e
-

E

Fig. 1.10 Density of states for a
particle in a one dimensional solid

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

1.5.2 Density of State

 Density of States in a Two Dimensional (2D) Potential Box, Thin Film

u”".

D(E) = Z |

the density of states in two dimensional case is constant

Density

=
-

E

Fig. 1.11 Density of states for a 2D
potential box

Applied Nonomoterlals & Deévices LAB.




1. Introduction to Quantum Mechanics

1.5.2 Density of State

 Density of States for a Particle in a Three Dimensional Box (3D Bulk)

In a box of length ‘a’, width ‘b’, and height ‘c’ with potential V"= 0 inside the box and
V = w0 outside the box, the energy states can be obtained as

ﬁ!
2 2 2
.E.I‘I_-._.?I_.I-..I':I: == ﬂ (”.1‘ + H}. 1 H:]

The wave function

. L fTALXYN . NG VY . fTNT
Wn (X, ¥,2) = Asin ( ] 51[1( - ] 5in ( ]
a b C

Density

D(E) o< EV?

E

Fig. 1.11 Density of states for a 2D
potential box




1. Introduction to Quantum Mechanics

1.5.3 Particle in a Coulomb Potential

* Another type of potential viz. Coulomb potential experienced by a particle

- ~/ﬁ . . .
The potential can be written as  ((IZe? negative sign means attraction between
Vir) == ; oppositely charged particles.

Where, ‘Ze’ is the charge due to Z number of electrons and  is the distance between nucleus and the charge

Electric Potential of a Point Charge: (& 1)

The electric potential V of a point charge q; ata Now if another charge like q3 1s placed at P a
typical point P in space at a distance 1} from it is distance rp from qj . then q findsa
given by : potential energy equal to
kq,q
q _ o Ly
Vv=k L P is just a point P.E. T 12
1 n in space, /
p Potential Energy of q, p
in the field of
. q int q 1 @
V=k L ¢
r / 1 - ) /];

1 1
L11./

Potential of g1 at P

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

1.5.3 Particle in a Coulomb Potential

* When a particle moving in three dimensions is attracted towards the centre

- For example an electron with negative charge attracted towards
a positively charged nucleus at the centre of an atom.

Spherical coordinates

Cartesian coordinates by writing y, the wave function in spherical coordinates vy (7, 0, @).

T
X =rsin® cos ¢

y = rsind sin 6

J—
/ z=rcos Bandr = x2 4+ y2+ 22

The time independent Schrodinger equation in spherical coordinates can be

N \* written as
~ N MY

Va2 (r.0.0) +

2m
12

[E-ViD)]Wir.0.¢) =0




1. Introduction to Quantum Mechanics

1.5.3 Particle in a Coulomb Potential

* the spherically symmetric form of the potential

Wavefunction (r,0,¢) is separable into functions of r, 6 and ¢ as
= R(r)Y (8, ¢)

U”;'[i'" . ;
- 1|jn,-m {,: Ba ¢:l::| = T}I}.J ¥l '.E'- r‘l-"l}
Y,

Em

are spherical functions

- The energy states can be obtained by considering one dimensional form

fi2

2m : K dU
— [E-V(D)]d(r.8.¢) =0 — _—~ —
h* | ] ¢ 2m dr?

VU (r.0.¢) + -

mr

+ [I"(r} + 7 £+ 1}] U=EU

Energy state of the system is described with three quantum numbers:

n (principal quantum number)
¢ (orbital quantum number)
m (magnetic quantum number)

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

1.5.3 Particle in a Coulomb Potential

* The angular momentum of the state is given by L

LP=((f+ 1)K where £ =0.1.2....(n=1)

* The magnetic quantum number m essentially gives component of
angular momentum L parallel to z axis

L.,=mhk where m =0,£1,£2,--- £ {

The states are often denoted by s, p, d, f'... tomean £ =0, 1, 2 etc.

- Consider now a Coulomb potential experienced by an electron of the form

)
=

Vir)=

r where Z is atomic number, a situation in hydrogen atom (H), helium ion (He™), lithium ion (Li%*")

Corresponding Schrodinger equation

HELI}I L :?311: L HEI!JI L E?‘Ei}ﬁ (E . Eez) v=0
dx*  ay? dz* h?

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

1.5.3 Particle in a Coulomb Potential

* The energy states by solving the equation in spherical coordinates

£ 2t Ztet
T nh? < m;
- : (+)
1 1 1 u is called reduced mass that is
e v mathematical description of motion J {

in a vibrating or rotating two-body

system (hydrogen) m, W O
) u
n=0+104+20+3...

t=01.2.3...(n—1)

E, is proportional to 1/n?, which means that energies will come closer as n increases

Applied Nanomaterials & Dévicés LAB.




1. Introduction to Quantum Mechanics

1.6 Tunnelling of a Particle Through Potential Barrier

* A matter wave is incident on a potential barrier (from negative x direction)

Consider one dimensional case

Incident Vo
—
NAS Sl
— _/—\\_//_\\_ jf'“\\f
reflected transmitted
» Fig. 1.13 Particle tunnelling through a potential barrier of height V. The kinetic energy of the
0 & particle is E < V. The particle is incident from left side in region I and by tunnelling through
I II I11 region 11, escapes to region 111 with some probability of transmission, given by Eq. (1.73)
<Region [ >

Energy of the particle is purely kinetic and potential V=0
However, E <V, in region I, where Vs the potential at x=0

- Particle with less energy than the potential energy (V) as in region I,
- As long as V,is not infinite, There certainly exists a possibility that particle can not only
enter the region II but also get transmitted in region 111 and propagate.

) “Tunnelling of electron through insulating layer(dielectrics)’

Applied Nanomaterials & Dévicés LAB.
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1. Introduction to Quantum Mechanics

1.6 Tunnelling of a Particle Through Potential Barrier

* There is always a probability of finding the particle on the other side of a potential barrier even
though its kinetic energy is less than the potential barrier

» Understanding many phenomena observed for subatomic particles and cannot be
explained by classical mechanics

Incident Vo
—
\ /\%{Xﬁ/\ Wy (%) Walx)
\‘— VAV
reflected transmitted
0 &

| I 11

- A particle with kinetic energy smaller than that required to
overcome the potential energy of the barrier does have some
probability of being on the other side of the barrier.

- This is quite important to explain quantum well structures,
solid state lasers, light emitting diodes, particles inside the
nucleus

Applied Nanomaterials & Dévicés LAB.
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2. Structure and Bonding
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