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Objectives 

Overview of the physical electronics of semiconductor

- Energy band theory

- Doping principle

- Free carrier statistics

- Drift and diffusion



Thermal-Equilibrium Statistics

For more discussion of electrical conduction in a semiconductor

Additional concept should be considered;

First, the concept of thermal equilibrium;

Second, the relationship at thermal equilibrium between the majority- and 

minority-carrier concentrations in a semiconductor;

Third, the use of Fermi statistics and the Fermi level to specify the carrier 

concentrations.



Thermal-Equilibrium Statistics

free-carrier densities in semiconductors are related to the populations of 

allowed states in the conduction and valence bands

Thermal Equilibrium

Although a semiconductor crystal can be excited by external sources of energy 

such as incident photoelectric radiation, many situations exist where the total 

energy is a function only of the crystal temperature

In this case the semiconductor spontaneously (but not instantaneously) 

reaches a state known as thermal equilibrium.

Thermal equilibrium is a dynamic situation in which every process is balanced 

by its inverse process



Thermal-Equilibrium Statistics

Example

Thermal Equilibrium

at thermal equilibrium, if electrons are being excited from a lower energy E1 to a 

higher energy E2, then there must be equal transfer of electrons from the states at 

E2 to those at E1

Likewise, if energy is being transferred into the electron population from the 

crystal vibrations (phonons), then at thermal equilibrium an equal flow of 

energy is occurring in the opposite direction.

E2

E1



Thermal-Equilibrium Statistics

At most temperatures of interest to us, there is sufficient thermal energy to excite 

some electrons from the valence band to the conduction band.

Mass-Action Law.

A dynamic equilibrium exists in which some electrons are constantly being 

excited into the conduction band while others are losing energy and falling 

back across the energy gap to the valence band.

The excitation of an electron from the valence band to the conduction

band corresponds to the generation of a hole and an electron, while an electron

falling back across the gap corresponds to electron-hole recombination



Thermal-Equilibrium Statistics

Mass-Action Law.

The generation rate of electron-hole pairs G depends on the temperature

T but is, to first order, independent of the number of carriers already present.

f1(T) is a function determined by crystal physics and temperature

The rate of recombination R

depends on the concentration of electrons n in the conduction band and also 

on the concentration of holes p (empty states) in the valence band, because 

both species must interact for recombination to occur.



Thermal-Equilibrium Statistics

Mass-Action Law.

At equilibrium

the generation rate must equal the recombination rate. G = R, in Equations

n; concentration of electrons

p; concentration of holes

the product of the hole and electron densities (np) in a given 

semiconductor is a function only of temperature



Thermal-Equilibrium Statistics

Mass-Action Law.

Intrinsic semiconductor (undoped) case

all carriers result from excitation across the forbidden gap.

n = p = ni where the subscript i reminds us that we are dealing with 

intrinsic material

The intrinsic carrier concentration depends on temperature because thermal 

energy is the source of carrier excitation across the forbidden energy gap.

The intrinsic concentration is also a function of the size of the energy gap 

because fewer electrons can be excited across a larger gap.

Nc and Nv are related to the density of allowed states near 

the edges of the conduction band and valence band



Thermal-Equilibrium Statistics

Mass-Action Law.

Intrinsic semiconductor (undoped) case

Because the intrinsic carrier concentration n is constant for a given semiconductor 

at a fixed temperature, it is useful to replace f3(T) by ni
2 in

it shows that increasing the number of electrons in a sample by adding donors 

causes the hole concentration to decrease so that the product np remains constant.

Similarly, This result, often called the mass-action law, has its counterpart in 

the behavior of interacting chemical species, such as the concentrations

of hydrogen and hydroxyl ions (H+ and OH- ) in acidic or basic solutions



Thermal-Equilibrium Statistics

Mass-Action Law.

In the neutral regions of a semiconductor (i.e., regions free of field gradients)

The number of positive charges must be exactly balanced by the number 

of negative charges

Positive charges exist on ionized donor atoms and on holes, while negative 

charges are associated with ionized acceptors and electrons.

→ If there is charge neutrality in a region where all dopant atoms are ionized

the electron concentration n:



Thermal-Equilibrium Statistics

Mass-Action Law.

In an n-type semiconductor Nd > Na

the electron density depends on the net excess of ionized donors over acceptors

a piece of p-type material containing Na acceptors can be converted

into n-type material by adding an excess of donors so that Nd > Na

For example

For silicon at room temperature, ni is 1.45 ×1010 cm-3

the net donor density in n-type silicon is typically about 1015 cm-3 or greater



Thermal-Equilibrium Statistics

Mass-Action Law.

When: ni is 1.45 ×1010 cm-3

The calculated 

the minority-carrier concentration is nearly 10 orders of magnitude below the 

majority-carrier population

In general, the concentration of one type of carrier is many orders of magnitude 

greater than that of the other in extrinsic semiconductors.



Thermal-Equilibrium Statistics

Fermi Level

The numbers of free carriers (electrons and holes) in any macroscopic piece of 

semiconductor are relatively large-usually large enough to allow use of the laws of 

statistical mechanics to determine physical properties.

Fermi-Dirac distribution function

Ef is a reference energy called the Fermi energy or Fermi level

At E = Ef,  fD(Ef) always equals 1/2.

The Fermi-Dirac distribution function, often called simply the Fermi function, 

describes the probability that a state at energy E is filled by an electron.



Thermal-Equilibrium Statistics

Fermi Level

The Fermi-Dirac distribution function, often called simply the Fermi function, 

describes the probability that a state at energy E is filled by an electron.

the Fermi function approaches unity at energies much lower than Ef , indicating that 

the lower energy states are mostly filled.

It is very small at higher energies, indicating that few electrons are found in high-

energy states at thermal equilibrium-in agreement with physical intuition. 

At absolute zero temperature all allowed states below Ef are filled and all states 

above it are empty. At finite temperatures, the Fermi function does not change so 

abruptly; there is a small probability that some states above the Fermi level are 

occupied and some states below it are empty.



Thermal-Equilibrium Statistics

Fermi-Dirac distribution of electrons in solid
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k : Boltzmann’s constant (8.62 x 10-5 eV/K)

EF : Fermi level (Energy that the occupation probability by an electron is exactly ½ .)

➔ Probability that an available energy state at E will be occupied 

by an electron at absolute temperature T.

Distribution of electrons over a range of allowed energy level 

at thermal equilibrium.

T = 0 K

T2 >  T1

Occupation probability at Fermi level → f (EF) = 1/2

@ T = 0 K

i) E < Ef → f (E) = 1

ii) E > Ef → f (E) = 0

@ T = T K

i) (E-Ef) > 3kT ➔ f (E) = e

ii) (E-Ef) < 3kT ➔ f (E) = 1- e

-(E-Ef)/kT

-(E-Ef)/kT

: electron

: hole 

*e3 ~ 20, e-3 ~ 0.05

Fermi Level



Thermal-Equilibrium Statistics

The Fermi function represents only a probability of occupancy. It does not contain

any information about the states available for occupancy and, therefore, cannot by 

itself specify the electron population at a given energy

Applying quantum physics to a given system provides information about the density 

of available states as a function of energy

g(E) or N(E)

It is zero in the forbidden gap (Ec > E > Ev), but it rises sharply within both the valence band (E 

< Ev) and the conduction band (E > EC>. The actual distribution of electrons as a function of 

energy can be found from the product of the density of allowed states g(E) within a small 

energy interval dE and the probability fD(E) that these states are filled.

Carrier concentration in intrinsic semiconductor



Thermal-Equilibrium Statistics

The total density of electrons in the conduction band can be obtained by multiplying 

the density-of-states function g(E) in the conduction band by the Femi function

and integrating over the conduction band

The total density of electrons is strongly relate to the carrier concentration[ n or n(E)]

Carrier concentration in intrinsic semiconductor



Thermal-Equilibrium Statistics

Carrier concentration in intrinsic semiconductor

Electron concentration in the conduction band 



Thermal-Equilibrium Statistics

Carrier concentration in intrinsic semiconductor

Electron concentration in the conduction band 

▪ Electron concentration in the conduction band

▪ Hole concentration in the valence band

Nc ≡ 2 (2π mnkT/h2)3/2 : effective density of states in CB

Nc = 2.86 × 1019 cm-3

: for GaAs at RT (300 K)Nc = 4.7× 1017 cm-3

Nv ≡ 2 (2π mp kT/h2)3/2 : effective density of states in VB

Nv = 2.66 × 1019 cm-3

: for GaAs RT (300 K)Nv = 7.0× 1018 cm-3

: for Si at RT (300 K)

: for Si RT (300 K)



Thermal-Equilibrium Statistics

n = Nc exp [-(Ec-Ef)/kT]

▪ For intrinsic semiconductors,

n = p = ni

= Nv exp [-(Ef-Ev)/kT]

Ef = Ei = 
2

(EC + EV)

2

kT
+ ln

Nc

Nv

Much smaller than Eg at RT (300 K)

Middle of the bandgap

(multiply both side by ln)

∴ Intrinsic Fermi level (EF) lies very close to middle of the bandgap

21

kT ~ 0.025 eV

Carrier concentration in intrinsic semiconductor



Thermal-Equilibrium Statistics

22

When the semiconductor contains a large dopant concentration 

[Nd → Nc or Na → Nv (~1019 cm-3 for Si)],

the Fenni-Dirac distribution cannot be approximated by the Maxwell-Boltzmann 

distribution function.  

Above equations are no longer valid, and more exact expressions must be used or 

the limited validity of the simplified expressions must be realized. 

Very highly doped semiconductors (Nd ≥ Nc, or Na ≥ Nv) are called degenerate 

semiconductors because the Fenni level is within the conduction or valence band.

Therefore, allowed states for electrons exist very near the Femi level, just as is the 

case in metals. Consequently, many of the electronic properties of very highly 

doped semiconductors degenerate into those of metals.

Carrier concentration in intrinsic semiconductor



Thermal-Equilibrium Statistics

▪ For intrinsic carrier density,

ni = n = p

ni
2 = n p

n = Nc exp [-(Ec-Ef)/kT]

p = Nv exp [-(Ef-Ev)/kT]

ni
2 =  Nc Nv exp [-(Ec-Ef) / kT] exp [-(Ef-Ev) / kT] 

=  Nc Nv exp [-(Ec - Ev) / kT] 

= Nc Nv exp [-Eg / kT] 

ni =  √ Nc Nv exp [-Eg / 2kT] 

Intrinsic carrier density vs Temperature

Si (1.1 eV) ni = 9.65 × 109 cm-3

GaAs (1.42 eV) ni = 2.25× 106 cm-3

at 300 K

smaller Eg →more ni

higher T→ more ni

Eg

(0.67 eV)

(1.1 eV)

(1.42 eV)

Carrier concentration in intrinsic semiconductor



Thermal-Equilibrium Statistics

Carrier concentration in extrinsic semiconductor

(1) Donors and Acceptors

Doped with impurity 

→ impurity energy levels introduced 

→ Extrinsic semiconductors

Donor Acceptor

T = 0 K

Generate electron

V elements(Sb, P, As..) for Si

T = 0 K T = 50 K 

Generate hole

III elements(B, Al, Ga..) for Si

T = 50 K 

ED

Ionization energy



Thermal-Equilibrium Statistics

Carrier concentration in extrinsic semiconductor

▪ Carrier concentration under complete ionization condition

➔ RT thermal energy is enough to lead to the full 

ionization of the dopants

Shallow donor concentration Nd

n = Nd
n = Nc exp [-(Ec - Ef)/kT]

Ec - Ef = kT ln (Nc/ Nd)

Shallow acceptor concentration Na

p = Na
p = Nc exp [-(Ef - Ev)/kT]

Ef - Ev = kT ln (Nv/ Na)

Conduction 
band

Ec

E

Ev

- - - - -Ea

Ei

Valence 
band 

Higher doping concentration (Nd or Na)

→ EF move closer to band edge

Conduction 
band

Ec

E

Ev

+ + + + +Ed

Ei

Valence 
band 

n
Nd

p
Na

⇒ n = Nd , p = Na



Thermal-Equilibrium Statistics

Carrier concentration in extrinsic semiconductor

▪ Carrier concentration under complete ionization condition

E E

EF

0 0.5 1.0

Band diagram Density of states F-D distribution

E

EF

Ec

Ev

n p = ni
2

p

Carrier concentration

n(E) and p(E) F(E)  N(E) 

Conduction 
band

Ec

E

Ev

ED

Valence 
band 

ND

n 

For n-type semiconductor

▪ Electron concentration is much higher than the hole concentration.

▪ Fermi level moves toward conduction (valence) band for n-type (p-type).

+ + + ++



Thermal-Equilibrium Statistics

Carrier concentration in extrinsic semiconductor

▪ Carrier concentration under complete ionization condition

For n-type semiconductor

n = Nc exp [-(Ec - Ef)/kT]
If we consider reference level of intrinsic Fermi level : Ei

n = Nc exp [-(Ec - Ei)/kT] exp [(Ef - Ei)/kT]

∵ ni = Nc exp [-(Ec-Ei)/kT]

n = ni exp [(EF-Ei)/kT]

p = ni exp [(Ei-Ef)/kT]

Conduction 
band

Ec

E

Ev

Ed

Valence 
band 

Ef

Ei

Conduction 
band

Ec

E

Ev

Ea

Valence 
band 

Ef

Ei

n-type semiconductor p-type semiconductor

∵ ni = Nv exp [-(Ei-Ev)/kT]

np = ni
2
→ Same as intrinsic case

➔ Mass action law

ni

Under thermal equilibrium condition 

(i.e., under no heat, light, and electrical field condition)



Thermal-Equilibrium Statistics

Carrier concentration in extrinsic semiconductor

▪ Carrier concentration under complete ionization condition

Fermi level adjust itself to preserve charge neutrality

→ total negative charge = total positive charge

n + Na = p + Nd → under complete ionization condition

np = ni
2

n =
(Nd – Na) +  √ (Nd – Na)

2 + 4 ni
2

2

p =
(Na – Nd) +  √ (Nd – Na)

2 + 4 ni
2

2

𝑛 𝑛 − (𝑁𝑑 − 𝑁𝑎) = 𝑛𝑖
2 𝑛2 − (𝑁𝑑 − 𝑁𝑎)𝑛 − 𝑛𝑖

2 = 0

Na : ionized acceptor Nd : ionized donor

Equilibrium electron and hole concentration in n-type semiconductor

p = ni
2 / n

n = ni
2 / p

Equilibrium electron and hole concentration in p-type semiconductor



Thermal-Equilibrium Statistics

Carrier concentration in extrinsic semiconductor

▪ Majority and minority carrier

If both donor and acceptor impurities are present simultaneously

→ Impurity with larger concentration determines the conductivity type

: majority carrier

• majority carrier : electron (hole) in n-type (p-type)  → nn or  pp

• minority carrier : electron (hole) in p-type (n-type) → np or  pn

Majority carrier
Minority 

carrier

n-type

Semiconductor

p-type

Semiconductor

n =
(Nd – Na) +  √ (Nd – Na)

2 + 4 ni
2

2

p =
(Na – Nd) +  √ (Nd – Na)

2 + 4 ni
2

2

p = ni
2 / n

n = ni
2 / p



Thermal-Equilibrium Statistics

Carrier concentration in extrinsic semiconductor

▪ Majority and minority carrier

n =
(Nd – Na) +  √ (Nd – Na)

2 + 4 ni
2

2

p =
(Na – Nd) +  √ (Nd – Na)

2 + 4 ni
2

2

Generally, in the extrinsic semiconductors (doped semiconductors)

⇒ the net impurity concentration is larger than ni

⇒ |Nd – Na|  ≫ ni

≈ Nd – Na (if   Nd > Na)

≈ Na – Nd (if   Na > Nd)
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